ST. LOUIS PUBLIC SCHOOLS

Language Companion to the DESE Math Model Curriculum, Grade 2

Developed as part of Saint Louis Public Schools
"Math Success for ELLs" grant, a partnership between Webster University, Magic House, and Saint Louis Public Schools ESOL Program, funded by the US department of Education

Grade 2- Add and Subtract Within 1000

Essential Measurable Learning Objectives	Language Objective	Sentence Frame
Students will fluently add within 100.	Students will respond to a given addition problem orally.	The sum is
Students will add twodigit numbers using strategies based on place value.	Students will explain orally the process using sequence words and target vocabulary: regroup, addition, addend, sum, place value, add, first, next, then, and last.	To add \qquad $+\ldots$ _ First \qquad Next \qquad Then \qquad Last \qquad The sum is
Students will solve addition problems with up to four addends.	Students will describe the process using target math vocabulary and sequence words.	
Students will fluently subtract within 100.	Students will respond orally using a complete sentence.	The difference is ___.
Students will subtract two-digit numbers using strategies based on place value.	Students will explain the strategies using sequence words and target vocabulary: regroup, subtraction, minus, difference, place value, subtract, first, next, then, and last.	To subtract \qquad First \qquad Next \qquad Then \qquad Last \qquad The difference is . \qquad
Students will add threedigit numbers within 1000 using place value strategies and concrete materials.	Students will explain orally the strategies using sequence words and target vocabulary: regroup, addition, addend, sum, place value, add, first, next, then, and last.	To add \qquad $+\ldots$: First \qquad Next \qquad Then \qquad Last \qquad The sum is \qquad
Students will subtract three-digit numbers within 1000 using place value strategies and concrete materials.	Students will explain orally the strategies using sequence words and target vocabulary: regroup, subtraction, minus, difference, place value, subtract, first, next, then, and last.	
Students will model how	Students will justify an addition	To solve the problem I used
Developed as part of Saint Louis Public Schools "Math Success for ELLs" grant, a partnership between Webster University, Magic House, and Saint Louis Public Schools ESOL Program, funded by the US department of Education		

addition and subtraction strategies work using objects, mathematical properties and drawings.	sentence/subtraction sentence to a partner using complete sentences.	
Students will demonstrate and explain addition and subtraction involving place value and concrete models.	Students will describe orally to a partner addition/subtraction problems using complete sentences and sequence vocabulary (first, next, then, last).	To solve this problem I used (manipulatives). First \qquad \qquad Next \qquad Then \qquad Last \qquad The answer is \qquad
Students will choose the most appropriate and efficient strategy for a problem and explain why they chose it.	Students will explain the strategy orally using complete sentences.	I chose to use \qquad to solve this problem because

Developed as part of Saint Louis Public Schools "Math Success for ELLs" grant, a partnership between Webster University, Magic House, and Saint Louis Public Schools ESOL Program, funded by the US department of Education

Grade 2- Geometry

Essential Measurable Learning Objectives	Language Objective	Sentence Frame
Students will identify triangles, quadrilaterals, pentagons, hexagons, and cubes.	Students will label shapes using target vocabulary: triangles, quadrilaterals, pentagons, hexagons, and cubes.	
Students will use defining attributes (number, size and position of sides, angles and faces) to describe and compare two- and three-dimensional figures.	Students will list defining attributes and 2D and 3D shapes using the target vocabulary: sides, angles, closed, line, faces, position, number.	I know this shape is a \qquad because the attributes are \qquad .
Students will draw/construct shapes having specified attributes (i.e., number of angles or number of equal faces).	Students will apply the target vocabulary by listening to a description of a shape and drawing it.	
Students will arrange objects in rectangular arrays, then write and solve equations to express the total as a sum of equal addends using repeated addition.	Students will describe orally an array using if...then statements.	If there are \qquad rows and each row has \qquad then I can add each row and the sum will be -.
Students will partition a rectangle into rows and columns of same-size units and count to find the total number of them.	Students will describe orally a rectangle partitioned into rows and columns using $i f$...then statements.	If there are \qquad rows and \qquad columns, then I can count to find the total units.

Developed as part of Saint Louis Public Schools "Math Success for ELLs" grant, a partnership between Webster University, Magic House, and Saint Louis Public Schools ESOL Program, funded by the US department of Education

Students will partition circles and rectangles into two, three, or four equal shares, then describe the parts and the whole using accurate mathematical terminology (halves, thirds, half of, a third of; two halves, three thirds, four fourths, etc.).	Students will describe orally and in writing how the shapes have been divided using target vocabulary: equal, circles, squares, rectangles, same as, halves, thirds, fourths.	This ___ has ___ equal parts because each part is the same size. I call each equal part__.
Students will demonstrate that halves, thirds, fourths of identical wholes need not have the same shape.	Students will explain orally the circle has two equal parts concept using complete sentences.	eacause each part is the same size. I call each equal part one-half.
because they are the same size/area.		

Developed as part of Saint Louis Public Schools "Math Success for ELLs" grant, a partnership between Webster University, Magic House, and Saint Louis Public Schools ESOL Program, funded by the US department of Education

Grade 2 - Representing Data

Essential Measurable Learning Objectives	Language Objective	Sentence Frame
Students will measure and record lengths of several objects to the nearest whole unit (cm or in).	Students will write lengths of several objects using target vocabulary: length, cm, inches.	The length of \qquad is \qquad $\mathrm{cm} / \mathrm{in}$.
Students will represent whole numbers on a number line with equally spaced units.	Students will describe orally numbers on their number line using positional terms: left, right, before, after, between.	
Students will create a line plot to represent length measurements.	Students will describe their method for creating a line plot orally using sequence words.	First \qquad Next \qquad Then \qquad Last \qquad
Students will interpret data from a line plot.	Students will write observational statements using complete sentences.	In this line plot, I notice ___.
Students will draw a picture graph with a single unit scale to represent four categories of data.	Students will describe orally their method for creating a picture graph using sequence words.	First \qquad Next \qquad Then \qquad Last \qquad
Students will interpret data on a picture graph with a single unit scale to represent four categories of data.	Students will write observational statements using complete sentences.	In this picture graph, I notice
Students will draw a bar graph with a single unit scale to represent four categories of data.	Students will describe orally their method for creating a bar graph using sequence words.	First \qquad Next \qquad Then \qquad Last \qquad
Students will represent	Students will justify their number	My equation is ___ because

Developed as part of Saint Louis Public Schools "Math Success for ELLs" grant, a partnership between Webster University, Magic House, and Saint Louis Public Schools ESOL Program, funded by the US department of Education

a mathematical situation with an expression or an equation/number sentence.	sentence/equation orally using a complete sentence.	
Students will solve simple put-together/take-apart problems using data from a bar graph with up to four categories of data.	Students will describe combinations of data sets from a bar graph orally using a complete sentence.	The number of \qquad and the number of \qquad equals \qquad -.
Students will solve simple comparison problems using data from a bar graph with up to four categories of data.	Students will describe interpretations of a bar graph orally using comparative language: less than, more than, fewer than.	

Developed as part of Saint Louis Public Schools "Math Success for ELLs" grant, a partnership between Webster University, Magic House, and Saint Louis Public Schools ESOL Program, funded by the US department of Education

Grade 2 - Solving Problems Involving Money

Essential Measurable Learning Objectives	Language Objective	Sentence Frame
Students will identify and state the value of pennies, nickels, dimes, and quarters.	Students will write the value of each coin next to its picture in complete sentences.	A \qquad (coin) is worth \qquad cent(s).
Students will read/record money amounts using \$ and ϕ symbols appropriately.	Students will list money amounts in two ways.	\mid
Students will exchange coins for an equivalent amount.	Students will ask a partner for an equivalent amount of money using a complete sentence.	"I have \qquad ϕ. Will you please give me (the same/equivalent) amount using different coins?"
Students will determine the value of sets of coins.	Students will describe their method for finding the value of a group of coins orally.	
Students will select coins to obtain a given value.	Students will draw and label the coins needed to represent a given amount.	
Students will make change from amounts up to one dollar.	Students will describe their method for finding change orally using target vocabulary: change, quarters, dimes, nickels, pennies, spent.	
Students will solve word problems involving dollar bills, quarters, dimes, nickels, and pennies.	Students will explain story problems and solutions involving money orally.	If I buy (an item) for \qquad ϕ and another (item) for \qquad ϕ, I can pay with \qquad quarters, \qquad dimes, \qquad nickels, and/or \qquad pennies.

Developed as part of Saint Louis Public Schools "Math Success for ELLs" grant, a partnership between Webster University, Magic House, and Saint Louis Public Schools ESOL Program, funded by the US department of Education

Grade 2 - Understanding Place Value to 1,000

Essential Measurable Learning Objectives	Language Objective	Sentence Frame
Students will count within 1,000.	Students will describe orally the strategy they used to count up to 1000.	I will start with \qquad and stop at \qquad by counting on \qquad .
Students will skip count by $5 \mathrm{~s}, 10 \mathrm{~s}$, and 100s to 1,000 .	Students will explain orally how to count a large amount by skip counting using complete sentences.	I can skip count this group by \qquad (5s, 10s, 100s).
Students will read numbers to 1,000 .	Students will read a series of numbers orally.	
Students will use numerals to write numbers to 1,000 .	Students will listen to a partner read a number, and then write the number in standard form.	Example: Students will write 343 after hearing three hundred forty-three.
Students will model numbers to 1,000 in a variety of ways.	Students will explain a model to illustrate a given number orally using target vocabulary: ones, tens, hundreds, thousands.	For the number \qquad I have \qquad hundreds, \qquad tens, and \qquad ones that I have shown with \qquad .
Students will identify 100 as the same as ten - tens.	Students will describe the relationship between tens and hundreds using target vocabulary: tens, hundred, equivalent to, equal to, groups.	\qquad groups of ten are \qquad 100
Students will identify and represent the value of the digits in a threedigit number.	Students will state the value of numbers using the target vocabulary: ones, tens, hundreds.	In the number \qquad , there are \qquad hundreds, \qquad tens, and \qquad ones.
Students will show the value of a zero in a three-digit number, including multiples of 100.	Students will state the value of the zero in 2 three-digit numbers where zero is in two different positions using a comparative statement.	In the number \qquad , the zero represents 0 \qquad , but in \qquad , the zero represents 0 \qquad Example: In the number 804, the zero represents 0 tens, but in 840, the zero represents 0 ones.
Students will write	Students will state a given three-	The number___ in expanded form is

Developed as part of Saint Louis Public Schools "Math Success for ELLs" grant, a partnership between Webster University, Magic House, and Saint Louis Public Schools ESOL Program, funded by the US department of Education

three-digit numbers in expanded form.	digit number in expanded form orally using a complete sentence.	\qquad plus \qquad \qquad plus \qquad equals \qquad
Students will order and compare three-digit numbers using <, $=$, or $>$ symbols to record comparison.	Students will read the number sentence orally using comparative adjectives in place of the math symbols: (greater than, less than, or equal to).	\qquad is greater than \qquad \qquad is less than \qquad \qquad is equal to \qquad
Students will add 10 or 100 to a three-digit number.	Students will describe orally how number value changes using complete sentences.	When adding 10 , the digit in the tens place \qquad When adding 100, the digit in the hundreds place \qquad —.
Students will subtract 10 or 100 from a threedigit number.	Students will describe orally how number value changes using complete sentences.	When subtracting 10 , the digit in the tens place \qquad When subtracting 100, the digit in the hundreds place \qquad .

Developed as part of Saint Louis Public Schools "Math Success for ELLs" grant, a partnership between Webster University, Magic House, and Saint Louis Public Schools ESOL Program, funded by the US department of Education

Grade 2 - Work with Time

Essential Measurable Learning Objectives	Language Objective	Sentence Frame
Students will identify, show and write the time to the five minutes using digital and analog clocks.	Students will state the time using target vocabulary: hour, minute, o'clock, quarter after, quarter to, quarter of, quarter til, half past, before. Students will explain how they found the time using target vocabulary: hour hand, minute hand, o'clock, after, before.	The time is \qquad . I know the time is \qquad because the hour hand is pointing in front of, before, after the \qquad and the minute hand is pointing to \qquad Example: I know the time is 6 o'clock because the hour hand is pointing to the 6 and the minute hand is pointing to the 12.
Students will read and express time in terms of quarter past, half past, and quarter till the hour.	Students will state the time using target vocabulary: hour, minute, o'clock, quarter after, quarter to, quarter of, quarter til, half past, before.	The time is ___.
Students will use A.M. and P.M. to identify a corresponding time.	Students will describe in writing the time shown in a picture using target vocabulary: am, pm.	In this picture of \qquad , the time would be \qquad AM/PM. Example: In this picture of a girl eating breakfast, the time would be 7:00 AM.
Students will order events by time.	Students will list 4 events from their day in chronological order using sequence words.	

Developed as part of Saint Louis Public Schools "Math Success for ELLs" grant, a partnership between Webster University, Magic House, and Saint Louis Public Schools ESOL Program, funded by the US department of Education

